
Sam White1, Abhinav Bhatele2, and Adam Kunen3

1 CASC at LLNL, UIUC 2 CASC at LLNL 3 WCI at LLNL

Exploring task-based parallel programming models for LLNL codes

Abstract

Task-based parallel programming models provide high-
level abstractions to address key issues at extreme scale.
Task models simplify code and empower intelligent
runtime systems to adapt program execution to
dynamic program behavior (e.g. load imbalance) and
hardware factors (e.g. latency, failures).

Task models

Tasks are schedulable units of work invoked on globally
addressable data, which can be local or remote.

 Charm++

•Parallel entities: Chares (C++ objects)
•Tasks: asynchronous remote method invocation
•Message-driven scheduling with overdecomposition
•Features: dynamic task mapping and load balancing,
automatic fault tolerance schemes

 Adaptive MPI

•Parallel entities: MPI ranks (as user-level threads)
•Tasks: everything between blocking MPI calls
•MPI’s API to Charm++’s runtime system and adaptive
features: load balancing, fault tolerance

Kripke: parallel sweeps

Sn Transport codes solve the linear Boltzmann
equation using sweeps over a 3D domain space.

Sweeps are sequential by nature, but scale by:
• Pipelining successive iterations
• Sweeping from all eight corners simultaneously

Conclusions

Performance
• Charm++ version of Kripke scales best
• AMPI close to MPI with no load balancing yet
• Overdecomposition is key to reducing pipeline fill-time

• Iterations-to-convergence depends on global zones

Productivity
• Tuning decomposition, mapping easier with tasks

• Task model expresses sweep dependencies naturally
• MPI messaging spread throughout application logic
• Charm++ parallel control flow all in a 135 SLOC file

Kripke scaling

Languages/Runtimes
1. Charm++
2. Adaptive MPI

Reference: MPI (+X)

Applications
1. Kripke: proxy app for Sn
particle transport
2. Miranda: full radiation
hydrodynamics code

Future work

• Investigate different mappings, load balancing
• Parallelize Kripke in group sets, direction sets
• Implement Kripke in other task models: Legion next

IM Release Number: LLNL-POST-675630

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Algorithm

 For each group set, GS:

 Pipeline direction sets, DS:

 When a given DS has upwind dependencies met:

 Sweep the local zone set ZS for all G,D in GS,DS.

 Send solution downwind to neighbors.

Overdecomposition

Miranda scaling

Strong scaling of 2D Noh problem on
Cab, comparing MPI and AMPI.

• AMPI virtual processors (VPs) refers
to the number of MPI ranks/core

• AMPI automatically swaps global
variables with MPI ranks at runtime

n=0

n=2

n=4

Weak scaling zones, strong scaling directions/groups on Vulcan.

• All models share same decomposition, number of messages per core

• Different data nestings of zones (Z), groups (G), directions (D)

8 ZS/core

• Charm++ chares
 are 3D zone sets

Sweeps appear as directed acyclic graphs of task
dependencies to the runtime system.

Task view

System view

1 ZS/core

• Many chares per core
 overlap communication

